
Ubertooth

Great Scott Gadgets

Apr 03, 2023

USER DOCUMENTATION

1 Ubertooth One 1

2 Build Guide 5

3 FAQ 9

4 Getting Started 11

5 Getting Help 15

6 Capturing BLE in Wireshark 17

7 Bluetooth Captures in PCAP 19

8 History 37

9 Ubertooth Community Projects and Mentions 39

10 Building from git 41

11 Software 45

12 Third Party Software 47

13 Firmware 49

14 Programming 53

15 Assembling Hardware 57

16 Release 2015-10-R1 61

17 Release 2017-03-R2 65

18 Release 2018-08-R1: the DEFCON release 69

19 Release 2018-12-R1 73

20 ToDo List 77

21 Release Procedure 79

22 Ubertooth Two Wishlist 81

i

23 Ubertooth Zero 83

ii

CHAPTER

ONE

UBERTOOTH ONE

Ubertooth One is the hardware platform of Project Ubertooth. It supersedes Ubertooth Zero and is currently the pre-
ferred platform.

1.1 Architecture

• RP-SMA RF connector: connects to test equipment, antenna, or dummy load.

• CC2591 RF front end.

• CC2400 wireless transceiver.

• LPC175x ARM Cortex-M3 microcontroller with Full-Speed USB 2.0.

• USB A plug: connects to host computer running Kismet or other host code.

1

https://ubertooth.readthedocs.io/en/latest/ubertooth_zero.html
http://en.wikipedia.org/wiki/SMA_connector
http://www.ti.com/product/cc2591
http://www.ti.com/product/cc2400
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-cortex-m-mcus/lpc1700-cortex-m3:MC_1403790745385
https://www.kismetwireless.net/

Ubertooth

1.2 Features

• 2.4 GHz transmit and receive.

• Transmit power and receive sensitivity comparable to a Class 1 Bluetooth device.

• Standard Cortex Debug Connector (10-pin 50-mil JTAG).

• In-System Programming (ISP) serial connector.

• Expansion connector: intended for inter-Ubertooth communication or other future uses.

• Six indicator LEDs.

1.3 Design

Ubertooth One was designed in KiCad, an open source electronic design automation software package, with surface
mount components suitable for reflow.

1.3.1 Pins and LEDs

This diagram shows the location of LEDs and the pins of the expansion connector.

LED guide:

2 Chapter 1. Ubertooth One

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/attached/13634/cortex_debug_connectors.pdf
https://www.kicad.org/
http://www.sparkfun.com/tutorials/59

Ubertooth

• RST: indicates that the LPC175x is powered on. This should always be on during operation except during a full
reset of the LPC175x (e.g., while entering ISP mode).

• 1V8: indicates that the CC2400 is being supplied with 1.8 V. Control of this supply depends on firmware. 1V8
power is required to activate the crystal oscillator which is required to activate USB.

• USB: indicates that USB has passed enumeration and configuration.

• TX: Control of this LED depends on firmware. It typically indicates radio transmission.

• RX: Control of this LED depends on firmware. It typically indicates radio reception.

• USR: Control of this LED depends on firmware.

The TX, RX, and USR LEDs blink in a distinctive chasing pattern when the bootloader is ready to accept USB DFU
commands.

1.3.2 Power Usage

These measurements were taken using Ubertooth One running firmware revision 2014-02-R2. Zero_Chaos took these
measurements using a Centech CT-USB-PW, available via eBay and others.

Command Description Power draw (amps)
Idle 0.09A

ubertooth-dump Receive 0.13A
ubertooth-util -t Transmit 0.22A
ubertooth-dfu --write Firmware upgrade 0.10A

1.3.3 Demonstration

Michael Ossmann presented Project Ubertooth: Building a Better Bluetooth Adapter at ShmooCon 2011.

1.3. Design 3

http://www.ebay.com/itm/Century-JAPAN-USB-Power-Meter-voltage-measuring-instrument-Centech-CT-USB-PW-/151281911884
http://store.mcetech.com/Merchant2/merchant.mvc?Screen=PROD&Product_Code=CT-USB-PW&Category_Code=USBPERIPH
http://www.shmoocon.org/schedule#ubertooth
http://www.shmoocon.org/

Ubertooth

4 Chapter 1. Ubertooth One

CHAPTER

TWO

BUILD GUIDE

2.1 Release 2020-12-R1

for Release 2018-12-R1 see here

2.1.1 Prerequisites

There are some prerequisites that need to be installed before building libbtbb and the Ubertooth tools. Many of these
are available from your operating system’s package repositories, for example:

Debian 10 / Ubuntu 20.04 / Kali

sudo apt install cmake libusb-1.0-0-dev make gcc g++ libbluetooth-dev wget \
pkg-config python3-numpy python3-qtpy python3-distutils python3-setuptools

Fedora 33

sudo dnf install libusb1-devel make gcc gcc-c++ cmake wget tar bluez-libs-devel
echo /usr/local/lib | sudo tee /etc/ld.so.conf.d/libc.conf

RHEL 8

sudo subscription-manager repos --enable=codeready-builder-for-rhel-8-x86_64-
→˓rpms
sudo dnf install libusb1-devel make gcc gcc-c++ wget tar bluez-libs-devel␣
→˓python36 python36-devel
echo /usr/local/lib | sudo tee /etc/ld.so.conf.d/libc.conf
Note: you will also need to install CMake 3.12.0 or greater. See https://
→˓cmake.org/install/

5

https://ubertooth.readthedocs.io/en/latest/Release_2018-12-R1.html

Ubertooth

CentOS 8

sudo dnf config-manager --enable powertools
sudo dnf install libusb1-devel make gcc gcc-c++ wget tar bluez-libs-devel␣
→˓python36 python36-devel
echo /usr/local/lib | sudo tee /etc/ld.so.conf.d/libc.conf
Note: you will also need to install CMake 3.12.0 or greater. See https://
→˓cmake.org/install/

Mac OS X users can use either MacPorts or Homebrew to install the required packages:

brew install libusb wget cmake pkg-config
or
sudo port install libusb wget cmake python38 py38-numpy py38-qtpy

FreeBSD users can install the host tools and library directly from the ports and package system:

sudo pkg install ubertooth

2.1.2 libbtbb

Next the Bluetooth baseband library (libbtbb) needs to be built for the Ubertooth tools to decode Bluetooth packets:

wget https://github.com/greatscottgadgets/libbtbb/archive/2020-12-R1.tar.gz -O␣
→˓libbtbb-2020-12-R1.tar.gz
tar -xf libbtbb-2020-12-R1.tar.gz
cd libbtbb-2020-12-R1
mkdir build
cd build
cmake ..
make
sudo make install
sudo ldconfig

2.1.3 Ubertooth Tools

The Ubertooth repository contains host code for sniffing Bluetooth packets, configuring the Ubertooth and updating
firmware. All three are built and installed by default using the following method:

wget https://github.com/greatscottgadgets/ubertooth/releases/download/2020-12-
→˓R1/ubertooth-2020-12-R1.tar.xz
tar -xf ubertooth-2020-12-R1.tar.xz
cd ubertooth-2020-12-R1/host
mkdir build
cd build
cmake ..
make

(continues on next page)

6 Chapter 2. Build Guide

Ubertooth

(continued from previous page)

sudo make install
sudo ldconfig

2.1.4 Wireshark plugins

Users of Wireshark version 2.2+ do not need to build any plugins at all and may skip this section (see this comment).
This includes users of Debian 10+, Ubuntu 20.04+, Fedora 33+, RHEL 8.3+, and most other Linux distributions. You
can check your version by clicking on Help –> About Wireshark.

Wireshark version 1.12 and newer includes the Ubertooth BLE plugin by default. It is also possible to capture BLE
from Ubertooth directly into Wireshark with a little work.

The Wireshark BTBB and BR/EDR plugins allow Bluetooth baseband traffic that has been captured using Kismet to be
analysed and disected within the Wireshark GUI. They are built separately from the rest of the Ubertooth and libbtbb
software.

The directory passed to cmake as MAKE_INSTALL_LIBDIR varies from system to system, but it should be the loca-
tion of existing Wireshark plugins, such as asn1.so and ethercat.so. On macOS this is likely /Applications/
Wireshark.app/Contents/PlugIns/wireshark/.

sudo apt-get install wireshark wireshark-dev libwireshark-dev cmake
cd libbtbb-2020-12-R1/wireshark/plugins/btbb
mkdir build
cd build
cmake -DCMAKE_INSTALL_LIBDIR=/usr/lib/x86_64-linux-gnu/wireshark/libwireshark3/
→˓plugins ..
make
sudo make install

Then repeat for the BT BR/EDR plugin:

sudo apt-get install wireshark wireshark-dev libwireshark-dev cmake
cd libbtbb-2020-12-R1/wireshark/plugins/btbredr
mkdir build
cd build
cmake -DCMAKE_INSTALL_LIBDIR=/usr/lib/x86_64-linux-gnu/wireshark/libwireshark3/
→˓plugins ..
make
sudo make install

2.2 Third Party Software

There are a number of pieces of third party software that support the Ubertooth. Some support Ubertooth out of the
box, while others require plugins to be built.

2.2. Third Party Software 7

https://github.com/greatscottgadgets/libbtbb/issues/50#issuecomment-284128258
https://ubertooth.readthedocs.io/en/latest/capturing_BLE_Wireshark.html
https://ubertooth.readthedocs.io/en/latest/capturing_BLE_Wireshark.html
https://ubertooth.readthedocs.io/en/latest/third_party_software.html

Ubertooth

2.3 Firmware

This completes the install of the Ubertooth tools, the next step is to look at the getting started guide. You should always
update the firmware on the Ubertooth device to match the software release version that you are using.

8 Chapter 2. Build Guide

https://ubertooth.readthedocs.io/en/latest/firmware.html

CHAPTER

THREE

FAQ

Question: What is the latest release?

Answer: The latest release is 2018-08-R1: the DEFCON release, but you should check this repo’s releases for the most
up to date information. See the Build Guide for instructions on how to download and build the software.

Question: I run Windows or Mac OS X. What’s the best way to use Ubertooth?

Answer: The best way to use Ubertooth is from a native Linux install. If you don’t normally run Linux, we recommend
you boot Linux from USB using a distro such as Kali or Pentoo.

It may be possible to use Ubertooth from within a virtual machine. However, people have reported issues with USB
throughput and requests timing out. If you’re a newbie, booting directly into Linux is the recommended method.

Question: How do I update firmware?

Answer: Refer to the wiki page Firmware.

Question: Can I use my Ubertooth with a VM?

Answer: Yes. Many people have reported successfully using their Ubertooth with host tools installed in a virtual
machine. There are, as always, some things to be aware of when attempting this.

• The Ubertooth uses USB2.0, which requires the VirtualBox extension pack to be downloaded and installed.

• The Ubertooth also uses different vendor and product identifiers when in normal operation and firmware upload
mode, so rules for both of these will need to be added to the virtual machine for full operation.

Other virtual machine environments may differ and therefore present different issues. If you successfully use the Uber-
tooth with a different virtualisation system, please let us know so that we can help future users.

Question: What can the Ubertooth capture?

Answer: The Ubertooth is able to capture and demodulate signals in the 2.4GHz ISM band with a bandwidth of 1MHz
using a modulation scheme of Frequency Shift Keying or related methods.

This includes, but is not limited to:

• Bluetooth Basic Rate packets

• Bluetooth Low Energy (Bluetooth Smart)

The following may be possible:

9

https://github.com/greatscottgadgets/ubertooth/releases
https://ubertooth.readthedocs.io/en/latest/build_guide.html
https://www.kali.org/
http://pentoo.ch/
https://ubertooth.readthedocs.io/en/latest/firmware.html
https://www.virtualbox.org/wiki/Downloads

Ubertooth

• 802.11 FHSS (1MBit)

• Some proprietary 2.4GHz wireless devices

Question: Can I listen to my phone calls?

Answer: Not yet, this will require full frequency hopping support and possibly require breaking encryption by sniffing
the connection process. It’s on the todo list, but there’s a lot of hard work to go before we get there. If you’re interested
in making it happen, you can get involved in the project.

Question: What is the max capture size of Bluetooth Low Energy (BLE) packets?

Answer: 50 bytes. Longer BLE packets are truncated to 50 bytes by the Ubertooth firmware.

10 Chapter 3. FAQ

CHAPTER

FOUR

GETTING STARTED

There are three major components of Project Ubertooth:

• hardware: The hardware design of Ubertooth One is quite stable. You can build one or buy one.

• firmware: This is software that executes on the ARM processor on the Ubertooth One itself. This page assumes
that you have the USB bootloader plus bluetooth_rxtx firmware installed on your board (which is typically what is
installed at the time of assembly). The bluetooth_rxtx firmware is moderately stable but is likely to be enhanced
as time goes on.

• host code: This is software running on a general purpose computer connected to the Ubertooth One via USB. If
you have not yet built the host code, please follow the build guide.

Ubertooth One is a development platform. The true power of the device is best realized when you start writing your
own software and adapting it to your needs. If you are just getting to know the board, however, it can be helpful to try
out open source code that others have made available. This guide will help you get started with your Ubertooth One by
introducing you to some useful host code from the Ubertooth software repository.

4.1 Spectrum Analysis

The first thing you should try with a new Ubertooth One is real-time spectrum analysis. Take a look at Jared’s demon-
stration video for a preview.

Connect an antenna to your Ubertooth One and plug it into your computer. Never operate your Ubertooth One
without an antenna connected. You should see the RST and 1V8 LEDs illuminate. This indicates that the LPC175x
microcontroller is running (RST) and that power is being supplied to the CC2400 wireless transceiver IC (1V8). The
USB LED may also light up if your computer’s operating system has enumerated and configured the device (typical on
Linux). Now you need some host code to tell the Ubertooth One what to do.

Download the latest Project Ubertooth file release or check out current development code from the git repository and
navigate to the host/python/specan_ui directory. Take a look at the README file and make sure that you have
installed the prerequisite software. Then execute ubertooth-specan-ui as described in the README and watch the
2.4 GHz activity detected by the Ubertooth One.

11

https://ubertooth.readthedocs.io/en/latest/assembling_hardware.html
http://greatscottgadgets.com/ubertoothone
https://ubertooth.readthedocs.io/en/latest/build_guide.html
http://www.sharebrained.com/2011/05/24/ubertooth-spectrum-analysis-fun
http://www.sharebrained.com/2011/05/24/ubertooth-spectrum-analysis-fun
https://github.com/greatscottgadgets/ubertooth/releases
https://github.com/greatscottgadgets/ubertooth

Ubertooth

One possible thing that could go wrong at this point is that your operating system does not grant you permission to
communicate with the USB device. Depending on your distribution and preference, this can be fixed on Linux either
by adding your user account to the usb group or by creating a new udev rule such as:

$ echo 'ACTION=="add" BUS=="usb" SYSFS{idVendor}=="1d50" SYSFS{idProduct}==
→˓"6002" GROUP:="plugdev" MODE:="0660"' > /etc/udev/rules.d/99-ubertooth.rules

A udev rules file is available in the host/build/misc/udev/. Copy it to /etc/udev/rules.d/ and run the following
as root:

udevadm control --reload-rules

Make sure you are a member of the plugdev group or change the rule to refer to the group of your choice. After adding
the udev rule, unplug the Ubertooth One, reboot or restart udevd, and plug in the Ubertooth One again.

During operation of ubertooth-specan-ui the RX LED should illuminate, and the USR LED should be dimly lit. After
you finish trying out ubertooth-specan-ui reset your Ubertooth One by unplugging it and plugging it back in.

4.2 LAP Sniffing

Bluetooth packets start with a code that is based on the Lower Address Part (LAP) of a particular Bluetooth Device
Address (BD_ADDR). The BD_ADDR is a 48 bit MAC address, just like the MAC address of an Ethernet device. The
LAP consists of the lower 24 bits of the BD_ADDR and is the only part of the address that is transmitted with every
packet.

The most important passive Bluetooth monitoring function is simply capturing the LAP from each packet transmitted
on a channel. LAP sniffing allows you to identify Bluetooth devices operating in your vicinity.

In order to sniff LAPs, you’ll have to compile the tools in host/ubertooth-tools. These are command line programs
intended to work with the bluetooth_rxtx firmware installed on your Ubertooth One. Follow the instructions in the
README file in that directory to install the the prerequisite libbtbb, a library for Bluetooth baseband functions. You
can install libbtbb from a file release rather than git if you prefer.

Once libbtbb is installed, just type:

mkdir build
cd build/
cmake ..
make

in the host directory to compile the tools there. Then make sure your Ubertooth One is plugged in and execute:

12 Chapter 4. Getting Started

https://github.com/greatscottgadgets/libbtbb
https://github.com/greatscottgadgets/libbtbb/releases

Ubertooth

$ ubertooth-rx

You should see various random LAPs detected. Due to uncertainties in identifying Bluetooth packets without prior
knowledge of an address, it is normal for this process to identify false positives. error correction should mitigate this
problem, but a small number of false positives may still be seen. When you see the same LAP detected more than once,
that is very likely an actual Bluetooth transmission.

Generate some Bluetooth traffic and enjoy the show. I like to use a mobile phone or other Bluetooth device to perform
an inquiry (usually called “find new Bluetooth devices” or something similar) to make sure that everything is working
properly. An inquiry should produce lots of packets with the LAP 0x9e8b33.

Once you have seen a LAP multiple times, you can be confident that it is a genuine Bluetooth piconet. To find the next
byte of the address, the UAP, we can use:

$ ubertooth-rx -l [LAP]

In this mode ubertooth-rx only detects packets from the given piconet and uses them to determine the next byte of the
address and some of the internal clock value.

For more information on this process, and the challenges involved in monitoring Bluetooth connections, please read
this blog post.

4.3 Kismet

More advanced Bluetooth sniffing has been implemented in the form of a plugin for Kismet, the venerable 802.11
monitoring tool. In order to compile the Kismet-Ubertooth plugin, you will need a Kismet source tree matching the
installed version. The easiest way to make this work is to uninstall any binary Kismet installation you may have installed
and then download the Kismet source and follow the instructions to compile and install from the fresh source code.
Once Kismet is installed, follow the instructions in host/kismet/plugin-ubertooth/README to install and use the
plugin.

Notice that Kismet-Ubertooth identifies not only the LAP but also the 8 bit Upper Address Part (UAP) of detected
devices as it is able. This is done by analyzing the timing and other characteristics of multiple packets over time.
Another advantage of Kismet is that it dumps complete decoded packets to a pcapbtbb file that can be read with a
Wireshark plugin that is distributed with libbtbb. Full packet decoding is only possible when the packet’s UAP has
been determined.

4.3. Kismet 13

http://ubertooth.blogspot.co.uk/2013/02/motivating-problem.html
http://www.kismetwireless.net/
https://github.com/greatscottgadgets/libbtbb

Ubertooth

4.4 Where to Go from Here

I hope you have found this guide helpful in getting to know your Ubertooth One. If you are interested in contributing
to the project, or if you need help or would just like to chat about Project Ubertooth, join the #ubertooth channel on
Discord. Happy hacking!

14 Chapter 4. Getting Started

https://discord.gg/rsfMw3rsU8
https://discord.gg/rsfMw3rsU8

CHAPTER

FIVE

GETTING HELP

5.1 Asking Questions

If you have questions about using Ubertooth the first place to look is the FAQ.

Many Ubertooth developers and users are available in the #ubertooth channel on Discord. Please remember that we
work across many timezones and you may need to wait some time for a response to your question.

5.2 Software Bugs

We use the GitHub issue tracker to log Ubertooth bugs. If the bug has previously been reported then adding detail is
often helpful. If you believe that you have found a new bug, then please create a new issue and describe the bug in as
much detail as possible.

When logging issues it is helpful for us to know the following:

• Software version

• Firmware version

• Operating system and hardware (i.e. ARM, x86, etc) if known

• Which command you were using

• Expected output

• Actual output

• Any other details that may help us to reproduce the bug

15

https://ubertooth.readthedocs.io/en/latest/faq.html
https://discord.gg/rsfMw3rsU8

Ubertooth

16 Chapter 5. Getting Help

CHAPTER

SIX

CAPTURING BLE IN WIRESHARK

You can capture BLE in Wireshark with standard Wireshark builds. This guide assumes Linux.

1. Run the command: mkfifo /tmp/pipe

2. Open Wireshark

3. Click Capture -> Options

4. Click “Manage Interfaces” button on the right side of the window

5. Click the “New” button

6. In the “Pipe” text box, type “/tmp/pipe”

7. Click Save, then click Close

8. Click “Start”

In a terminal, run ubertooth-btle:

ubertooth-btle -f -c /tmp/pipe

In the Wireshark window you should see packets scrolling by.

Note: If you get User encapsulation not handled: DLT=147, check your Preferences->Protocols->DLT_USER the steps
you want are:

1. Click Edit -> Preferences

2. Click Protocols -> DLT_USER

3. Click Edit (Encapsulations Table)

4. Click New

5. Under DLT, select “User 0 (DLT=147)” (adjust this selection as appropriate if the error message showed a dif-
ferent DLT number than 147)

6. Under Payload Protocol, enter: btle

7. Click OK

8. Click OK

17

https://github.com/greatscottgadgets/ubertooth/issues/61

Ubertooth

6.1 Capturing BLE in scapy

1. Do not use mkfifo for the filename, it will cause scapy to slow dramatically.

2. In a terminal, run ubertooth-btle:

ubertooth-btle -f -q /tmp/pipe

3. Open python and run:

from scapy.all import *
p = sniff(offline='/tmp/pipe')

p is now a list of the packets captured!

6.2 Sniffing connection data

With recent Ubertooth firmware, only advertisements are captured by default. Once you have identified the device
address of the target device you would like to sniff, run:

ubertooth-btle -t aa:bb:cc:dd:ee:ff

The Ubertooth will follow connections involving this target until -t none is passed or the device is reset.

You may need to attempt connecting several times until Ubertooth is able to follow the connection successfully.

6.3 Capturing from a remote host

You can use sshdump to remotely capture packets from a Ubertooth attached to another host or virtual machine. In the
Wireshark UI, this may show up as an interface named “SSH remote capture: sshdump” which needs to be configured
first with the following “remote capture command”:

killall ubertooth-btle; unlink /tmp/btlepipe; mkfifo /tmp/btlepipe; ubertooth-
→˓btle -f -c /tmp/btlepipe &>/dev/null & cat /tmp/btlepipe

The “remote interface” option is ignored and can be set to any value.

6.4 Useful display filters

Only connection requests and non-zero data packets:

btle.data_header.length > 0 || btle.advertising_header.pdu_type == 0x05

Only attribute read responses, write requests, and notifications:

btatt.opcode in { 0x0b 0x12 0x1b }

18 Chapter 6. Capturing BLE in Wireshark

https://www.wireshark.org/docs/man-pages/sshdump.html

CHAPTER

SEVEN

BLUETOOTH CAPTURES IN PCAP

7.1 Overview

Classic PCAP files store a sequence of packets of a single link type. Published link types are here. The pcapng format
also uses these same link types and the per-packet formatting as PCAP.

Early versions of libbtbb and ubertooth saved PCAP files with the DLT_PPI format, which was expedient but is con-
sidered deprecated by the libpcap folks. Best practice is to allocate a DLT for a particular link-layer and define a
pseudo-header for that DLT that precedes each packet in the file. Early versions of this article formed a place to collect
such a proposal. Now that the DLTs are allocated, and this article serves to collect implementation alternatives and
details.

It was possible, and somewhat consistent with DLT_BLUETOOTH_HCI_H4_WITH_PHDR, to allocate a single
DLT_BLUETOOTH_LOW_LEVEL to indicate any Bluetooth capture (BR/EDR or LE). However, the preference was
to have separate DLT’s for BR/EDR baseband and LE link-layer (as per the terms used in the Bluetooth spec).

Since PCAP has general applicability to packet capture, it made sense to provide a vendor-neutral, generic view of
Bluetooth capture. The allocated DLTs can be applied to current and future versions of both ubertooth and gr-bluetooth,
and potentially other RF capture tools as well.

7.2 Aspects of Bluetooth Capture

Sometimes we want to capture and record malformed, truncated, or garbled packets along with ostensibly valid or pris-
tine ones. We also want to capture packets when some link parameters are unknown. When operating promiscuously,
the capture tool may accept noise bursts as candidate Bluetooth packets. In extreme cases, the capture tool may not
even de-whiten the packets, preferring to do that as a post-processing step. It was therefore important to include some
of the receiver metrics in the capture metadata so post-processing and display tools like Wireshark can easily filter out
unwanted packets, or avoid redundantly checking packet integrity when it’s already known.

Five areas of receiver metadata were contemplated to assist in packet classification:

1. signal and noise strength

2. flags and metrics on the validity of unprotected fields (BR sync word, LE access address)

3. error-correction on BR/EDR when subject to FEC

4. whether all or portions of the packet is de-whitened

5. packet-level error-checking already performed at capture (CRC, HEC, MIC)

Since the current ubertooth can recover BR and LE packets, but not EDR payloads, there was also a need to indicate
whether the EDR data is present in the packet capture.

19

http://www.tcpdump.org/linktypes.html
http://www.winpcap.org/ntar/draft/PCAP-DumpFileFormat.html

Ubertooth

7.3 Capture Use Cases Summarized

The following use cases apply to both full-band and narrowband capture strategies. There are no particular restrictions
imposed under full-band captures. However, for a narrowband captures (e.g. Ubertooth):

• learning implies the tool transitions from receiving a static channel, or surveying channels, to following particular
hop sequence(s), and

• limited hop sequence(s) (piconets/access addresses) may be followed at a given time.

Hybrid captures are also supported by these use cases and capture formats. For example, one may configure several nar-
rowband (e.g. Ubertooth) or partial-band (e.g. gr-bluetooth) captures, on static channels, and perform post-processing
on the set of capture files (either PCAP or PCAPNG). A similar hybrid arrangement is possible to post-process several
narrowband capture tools following different hop sequences.

Use cases involving encryption are TBD.

20 Chapter 7. Bluetooth Captures in PCAP

Ubertooth

7.3. Capture Use Cases Summarized 21

Ubertooth

7.3.1 BR/EDR

Name Description Comments Packets De-
whitened?

Reference
LAP

Reference
UAP

HEC/CRC
checking

Promiscu-
ous capture
without
learning

All packets
that meet the
configured
RF criteria
(e.g. signal
strength or
SNR), and
meet the
configured
criteria for
access-code
offenses (e.g.
preamble,
trailer must
be valid), are
decoded and
stored in the
capture file.

Either PCAP
or PCAPNG
is equally
useful. Cap-
ture file
may be very
large. Post-
processing
necessary to
recover UAP
per LAP,
and CLK per
LAP/UAP,
and filter
packets of
interest.

No Invalid Invalid No

Promiscuous
capture with
learning

Initially oper-
ates as above,
but as capture
tool recovers
LAPs, and
the associ-
ated UAP,
and CLK
parameters,
it is able to
perform more
processing
per packet.

PCAP or
PCAPNG
may be used,
but the lat-
ter is more
useful since
it includes a
record of the
capture tool’s
learning pro-
cess. Post-
processing
similar
to above
may back-
annotate,
de-whiten,
and integrity-
check packets
captured
before the
parameters
were learned.
Essentially,
the post-
processing
mentioned
above is
split between
capture-time
and post-
capture-time.

Initially no,
later yes

Initially in-
valid, later
known

Initially in-
valid, later
known

Initially
no, later
optionally
performed

Capture of
targeted
LAPs, with
and without
learning

Only cap-
tures packets
with an ac-
cess code
that includes
the targeted
LAPs, with
a configured
tolerance for
access code
bit errors.
The capture
tool may
or may not
attempt to
learn the
UAP and
CLK pa-
rameters per
configured
LAP.

This is sim-
ply a stricter
version of the
promiscuous
captures,
where the
access code
triggering
capture is
targeted,
resulting
in a much
smaller cap-
ture file for
the same traf-
fic pattern.
Whether the
capture tool
learns or
not, post-
processing
is useful
to back-
annotate,
modify, and
filter packets.

Initially no,
later yes with
learning

Valid Initially in-
valid, later
known with
learning

Initially
no, later
optionally
performed
with learning

Capture of
targeted
LAP/UAPs,
with and
without
learning

Operates
as above,
except the
configured
LAP/UAPs
are used for
all packet
capture pro-
cessing. The
capture tool
may or may
not attempt
to learn the
CLK align-
ment per
LAP/UAP.

This is an
accelerated
version of tar-
geted LAPs,
where the
associated
UAP is not
learned.

Initially no,
later yes with
learning

Valid Valid Initially
no, later
optionally
performed
with learning

Capture of
known mas-
ter devices

Operates as
above, except
the master
devices’
internal state
(BD_ADDR,
CLK) is
known at
capture time.

There is no
need to pas-
sively learn
any piconet
parameters.

Yes Valid Valid Optionally
performed

22 Chapter 7. Bluetooth Captures in PCAP

Ubertooth

7.3.2 LE

Name Description Comments Packets De-
whitened?

Reference AA CRC checking

Promiscuous
capture without
learning

All packets
that meet the
configured RF
criteria (e.g.
signal strength
or SNR), and
meet the config-
ured criteria for
access address
offenses (e.g.
preamble must
be valid, access
address must be
well-formed),
are stored in the
capture file. The
captured packets
are optionally
de-whitened.

Either PCAP
or PCAPNG is
equally useful.
Capture file may
be very large.
Post-processing
necessary to
recover connec-
tion parameters,
and filter pack-
ets of interest.

Optional Valid for Adver-
tising channels
only

Optionally
performed for
Advertising
channels only

Promiscuous
capture with
learning

Initially oper-
ates as above,
except access
addresses are
learned by the
capture tool, e.g.
by accumulating
candidates on
Data channels
or process-
ing CON-
NECT_REQ
PDUs on Adver-
tising channels.

Access ad-
dresses learned
by profiling
Data chan-
nels cannot be
CRC-checked,
because the
CRCInit param-
eter is unknown.

Yes (but op-
tional)

Initially valid
for Advertising
channels only,
but later valid
for Data chan-
nels as access
addresses are
learned

Optionally
performed for
Advertising
channels or
Data channels
where CRCInit
is known for the
access address

Targeted capture Specific
BD_ADDRs are
selected, and
the associated
access addresses
are whitelisted
for capture
when data
from a CON-
NECT_REQ
PDU involv-
ing those
BD_ADDRs is
processed

The contents
of the CON-
NECT_REQ
PDU may be
found by captur-
ing Advertising
channels or
configured into
the capture tool
directly.

Yes (but op-
tional)

Valid Optionally per-
formed

7.3. Capture Use Cases Summarized 23

Ubertooth

7.4 Session Meta Information (Proposed)

Often there is meta-information that is recovered during the Bluetooth air capture, during post-processing, or provided
out-of-band. Here we enumerate PCAPNG options for use within the interface description block for Bluetooth captures.

Some of these session-oriented data have time-windows that bound their applicability. A timestamp pair is used to
define such a window. Timestamps are stored in same precision as indicated in ts_resol field of the capture interface.
When both timestamps are equal (e.g. both zero), the meta-datum applies for the entire capture session.

PCAPNG options with MSB set are available for local use. We simply state that the interface options enumerated
below are local to the DLTs allocated for Bluetooth RF captures. The most-significant byte for all interface option
codes below is 0xd3, which was selected as unlikely to conflict with other local interface options that might be in use
in PCAPNG generally. The ranges of least-significant bytes allocated below to option codes are: general Bluetooth is
0x0-0x3f, BR/EDR is 0x40-0x7f, and LE is 0x80-0xbf, with 0xc0-0xff reserved.

7.4.1 BREDR_BD_ADDR

This record provides Bluetooth device addresses (BD_ADDRs) that may be present in the packet capture. BD_ADDRs
are useful in post-processing or display tools to provide unique identification of the devices involved in piconet com-
munication.

Device addresses may be recovered by the capture tool or provided by the user as a parameter to the capture session.
In either case, this BREDR_BD_ADDR record may appear in the PCAPNG capture file.

When recovered by the capture tool, the UAP may be partly recovered by determining the channel hop sequence. Only
the 4 least-significant bits of the UAP are used in hop-sequence determination. UAPs are also used in the BR/EDR
Header Error Check, and payload Cyclic Redundancy Check generation, and may be recovered by accumulating can-
didates from the captured Bluetooth packets. In these cases, the UAP recorded may be masked to indicate which bits
are known with certainty.

The UAP and NAP are available in the clear as fields within the FHS Packet. When captured directly, or when provided
as a capture session parameter, the UAP and NAP may be recorded with certainty (all mask bits set).

The capture tool may store multiple records for the same BD_ADDR, as long as subsequent records indicate more
certainty in the known UAP bits or add a known NAP. This sort of situation might occur if a capture tool starts out
without knowing any UAP bits, then determines some UAP bits from hop-sequence following, more UAP bits from
HEC and CRC prediction, and finally the full BD_ADDR contents after capturing an applicable FHS packet.

Option Structure

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 0xd340 | 8 |
+-+
| LAP | UAP |
+-+
| NAP | UAP_mask | NAP_valid |
+-+

24 Chapter 7. Bluetooth Captures in PCAP

http://www.winpcap.org/ntar/draft/PCAP-DumpFileFormat.html#sectionopt
http://www.winpcap.org/ntar/draft/PCAP-DumpFileFormat.html#sectionidb
http://www.winpcap.org/ntar/draft/PCAP-DumpFileFormat.html#sectionidb

Ubertooth

Description

The option code and length are expressed in the native endianness used by PCAPNG. All multi-octet fields defined
below are expressed in little-endian format.

The LAP field is the Lower Address Part of the the Bluetooth device address, as per Bluetooth spec Volume 2, Part B,
Section 1.2.

The UAP field is the Upper Address Part of the the Bluetooth device address, as per Bluetooth spec Volume 2, Part B,
Section 1.2.

The NAP field is the Network Address Part of the the Bluetooth device address, as per Bluetooth spec Volume 2, Part
B, Section 1.2.

The UAP_mask field has its bits set to indicate which bits of the UAP are known with certainty.

The NAP_valid field is a flag in the least-significant bit that indicates whether the NAP field is populated with valid
data. All other bits of this field are reserved and must be zero.

C Structure

typedef struct _brder_bdaddr {
uint8_t LAP[3];
uint8_t UAP;
uint16_t NAP;
uint8_t UAP_mask;
uint8_t NAP_valid;

} bredr_bdaddr;

7.4.2 BREDR_CLK

This record provides Bluetooth Clock alignment information. The alignment timestamp used in this record is the same
precision as the PCAPNG interface header indicates.

Some capture tools estimate the master device clock by inspecting packets and building confidence in the estimate.
This record provides a mask that has bits set for known master clock bits. This distinguishes known bits from unknown
bits as the master clock estimate improves. Consequently, multiple BREDR_CLK records may appear in the PCAPNG
capture file for the same LAP/UAP, provided that subsequent entries offer a better estimate of the device clock.

The information record may be formed as a result of capturing a Bluetooth FHS packet, in which case the CLK_mask
should indicate all CLK bits are known.

Option Structure

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 0xd341 | 20 |
+-+
| |
| alignment timestamp |
| |
+-+

(continues on next page)

7.4. Session Meta Information (Proposed) 25

Ubertooth

(continued from previous page)

| LAP | UAP |
+-+
| CLK |
+-+
| CLK_mask |
+-+

Description

The option code and length are expressed in the native endianness used by PCAPNG. All multi-octet fields defined
below are expressed in little-endian format.

The Alignment Timestamp is a PCAPNG-resolution timestamp that serves as a reference point for CLK associated
with the Bluetooth master device referenced by LAP and UAP.

The LAP field is the Lower Address Part of the the Bluetooth device address, as per Bluetooth spec Volume 2, Part B,
Section 1.2.

The UAP field is the Upper Address Part of the the Bluetooth device address, as per Bluetooth spec Volume 2, Part B,
Section 1.2.

The CLK field is the native clock of the Bluetooth device, with bits 0-1 and bits 28-31 always zero.

The CLK_mask field determines which bits of CLK are valid, with bits 0-1 and bits 28-31 always zero.

C Structure

typedef struct _brder_bdaddr {
uint64_t ns;
uint8_t LAP[3];
uint8_t UAP;
uint32_t CLK;
uint32_t CLK_mask;

} bredr_bdaddr;

7.4.3 BT_WIDEBAND_RF_INFO

Some capture tools, e.g. gr-bluetooth, allow for intentional aliasing such that multiple Bluetooth channels appear as
superimposed images within a relatively narrow baseband.

Here we define a generic wideband RF information structure so aliasing conditions may be recorded in the PCAPNG
capture file.

A post-processing or display tool might use this information to indicate the set of possible RF channels ascribed to each
captured packet. BT_WIDEBAND_RF_INFO only applies to packets captured under the applicable interface, where
the packet’s Flags field indicates the RF channel was subject to aliasing.

26 Chapter 7. Bluetooth Captures in PCAP

Ubertooth

Option Structure

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 0xd300 | 16 |
+-+
| centre frequency in Hz |
+-+
| analog bandwidth in Hz |
+-+
| intermediate frequency in Hz |
+-+
| sampling bandwidth in Hz |
+-+

Description

The option code and length are expressed in the native endianness used by PCAPNG. All multi-octet fields defined
below are expressed in little-endian format.

The Centre Frequency field determines the centre of the RF capture, in Hz.

The Analog Bandwidth field determines the passband width of the analog section employed in the capture tool. It is
measured from band centre to the band edge, in Hz.

The Intermediate Frequency field determines the intermediate carrier frequency used in the analog receiver, relative
to the Centre Frequency, in Hz.

The Sampling Bandwidth field determines the digital sampling bandwidth employed in the capture tool, in Hz.

C Structure

typedef struct _bt_wideband_rf_info {
uint32_t centre_freq_hz;
uint32_t analog_bw_hz;
int32_t intermediate_freq_hz;
uint32_t sampling_bw_hz;

} bt_wideband_rf_info;

7.4.4 LE_LL_CONNECTION_INFO

This record provides context for a BTLE connection so that a post-processor or display tool may perform a more
in-depth packet analysis. The following fields may be applied:

• InitA, the initiator’s public or random device address, may be used to connect packets with a device.

• AdvA, the advertiser’s public or random device address, may be used to connect packets with a device.

• AA, the access address, connects a given LE packet to the rest of the data in this record (since all LE packets
contain an AA field).

• CRCInit, the 24-bit LFSR initial value, may be used to verify per-packet CRC integrity.

• WinSize, WinOffset, Interval, and Latency may be used to verify adherence to RF transmission rules.

7.4. Session Meta Information (Proposed) 27

Ubertooth

• Timeout may be used to infer connection loss when packets are absent.

• ChM, the allowable RF channel map, and Hop, may be used to verify the RF hop sequence.

The format of this record matches the CONNECT_REQ PDU used in the LE link layer. It is anticipated records of this
nature would accrue in the capture file as follows:

1. when a CONNECT_REQ PDU is captured, a record is stored with the PDU contents, and the capture tool con-
siders the values current for the indicated AA.

2. when a LL_CONNECTION_UPDATE_REQ PDU is captured after a CONNECT_REQ PDU, for the same AA:

1. a new record is created, updating the WinSize, WinOffset, Interval, Latency, and Timeout fields.

2. the valid-from timestamp is determined by the Instant parameter of the
LL_CONNECTION_UPDATE_REQ PDU.

3. the other parameters in this record are populated with those values already considered current.

4. at the indicated instant, capture tool considers the updated values current for the indicated AA.

3. when a LL_CHANNEL_MAP_REQ PDU is captured after a CONNECT_REQ PDU, for the same AA:

1. a new record is created, updating the ChM field.

2. the valid-from timestamp is determined by the Instant parameter of the LL_CHANNEL_MAP_REQ PDU.

3. the other parameters in this record are populated with those values already considered current.

4. at the indicated instant, capture tool considers the updated ChM current for the indicated AA.

It is noted that an LE packet capture may contain all the information necessary to synthesize these records. Therefore,
these records may be created during capture or afterwards, as a post-processing step. In the latter case, a classic PCAP
file may be converted to PCAPNG.

Option Structure

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 0xd380 | 42 |
+-+
| |
| valid from timestamp |
| |
+-+
| |
| InitA +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ AdvA |
| |
+-+
| AA |
+-+
| CRCInit | WinSize |
+-+
| WinOffset | Interval |
+-+
| Latency | Timeout |

(continues on next page)

28 Chapter 7. Bluetooth Captures in PCAP

Ubertooth

(continued from previous page)

+-+
| |
| ChM +-+
| | Hop+SCA | pad |
+-+

Description

The definition of the fields are found in the Bluetooth specification Volume 6, Part B, Sections 2.3.3.1, 2.4.2.1, and
2.4.2.2.

C Structure

typedef struct _le_ll_connection_info {
uint64_t valid_from_ts;
uint8_t InitA[6];
uint8_t AdvA[6];
uint32_t AA;
uint8_t CRCInit[3];
uint8_t WinSize;
uint16_t WinOffset;
uint16_t Interval;
uint16_t Latency;
uint16_t Timeout;
uint8_t ChM[5];
uint8_t HopAndSCA;

} le_ll_connection_info;

7.4.5 Under Development

• BR/EDR

– link-key info: link-key (16 bytes) + 2 BR_ADDR (12 bytes) + 2 timestamps (16 bytes)

– E0 encryption info: BR_ADDR (6 bytes) + 2 timestamps (16 bytes) + keylen (1 bytes) + key (N bytes)

– AES-CCM session info: session key (16 bytes) + nonce (13 bytes) + BR_ADDR (6 bytes) + 2 timestamps
(16 bytes)

• LE

– AES-CCM session info: session key (16 bytes) + nonce (13 bytes) + AA (4 bytes) + 2 timestamps (16
bytes)

7.4. Session Meta Information (Proposed) 29

Ubertooth

7.5 Allocated DLTs

Common to the following pseudoheaders:

• mandatory fields:

– a rf_channel field, although channels differ between BR/EDR and LE.

– a flags field that indicates which optional fields are present, and other boolean metadata.

• optional fields:

– signal power and noise power, probably used by more sophisticated capture tools.

The remaining fields are specific to the BR/EDR and LE capture process, including the packet quality indicators men-
tioned above.

7.5.1 LINKTYPE_BLUETOOTH_BREDR_BB

• only covers BR/EDR baseband packets, Bluetooth spec Vol.2 Part B.

• each packet includes a packed pseudoheader described below, optionally followed by the decoded BR/EDR base-
band PAYLOAD.

– here decoded is used in the same sense as Bluetooth spec Vol 2 Part B Section 7.

– BR/EDR PAYLOAD formats are described in Bluetooth spec Vol 2 Part B Section 6.1 and 6.6.

• the packet SYNC WORD (sec 6.3) is not stored, rather the LAP is recovered and stored in the pseudoheader.

• the packet HEADER (sec 6.4) is decoded and stored in the pseudoheader.

• further downstream receiver processing may or may not be performed on the PAYLOAD.

– refer to figure 7.2 of Bluetooth spec Vol 2 Part B.

– de-whitening, CRC checking, decryption, and MIC checking, are optional.

– flags in the pseudo-header indicate which of these have been performed.

– none of these optional processing steps affect the length of the stored packet PAYLOAD.

Packet Structure

+---------------------------+
| RF Channel |
| (1 Octet) |
+---------------------------+
| Signal Power |
| (1 Octet) |
+---------------------------+
| Noise Power |
| (1 Octet) |
+---------------------------+
| Access Code Offenses |
| (1 Octet) |
+---------------------------+
| Payload Transport Rate |
| (1 Octet) |

(continues on next page)

30 Chapter 7. Bluetooth Captures in PCAP

Ubertooth

(continued from previous page)

+---------------------------+
| Corrected Header Bits |
| (1 Octet) |
+---------------------------+
| Corrected Payload Bits |
| (2 Octets) |
+---------------------------+
| Lower Address Part |
| (4 Octets) |
+---------------------------+
| Reference LAP |
| (3 Octets) |
+---------------------------+
| Reference UAP |
| (1 Octet) |
+---------------------------+
| BT Packet Header |
| (4 Octets) |
+---------------------------+
| Flags |
| (2 Octets) |
+---------------------------+
| BR or EDR Payload |
. .
. .
. .

Description

All multi-octet fields are expressed in little-endian format. Fields with a corresponding Flags bit are only considered
valid when the bit is set.

The RF Channel field ranges 0 to 78. It reflects the value described in the Bluetooth specification Volume 2, Part A,
Section 2.

The Signal Power and Noise Power fields are signed integers expressing values in dBm.

The Access Code Offenses field is an unsigned integer indicating the number of deviations from the valid access code
that led to the packet capture. Access codes are interpreted as described in Bluetooth specification Volume 2, Part B,
Section 6.3.

The Payload Transport Rate field represents a column of Bluetooth specification Volume 2, Part B, Section 6.5, Table
6.2, and is interpreted as two nibbles as follows.

• 0x.0 indicates the BT payload was BR and captured with GFSK demodulation

• 0x.1 indicates the BT payload was EDR and captured with PI/2-DQPSK demodulation

• 0x.2 indicates the BT payload was EDR and captured with 8DPSK demodulation

• 0x0. indicates the packet logical transport is any (link parameters unknown)

• 0x1. indicates the packet logical transport is SCO

• 0x2. indicates the packet logical transport is eSCO

• 0x3. indicates the packet logical transport is ACL

7.5. Allocated DLTs 31

Ubertooth

• 0x4. indicates the packet logical transport is CSB

• 0xff indicates this is an ID packet so BT Packet Header is ignored and there is no payload

All other values of the Payload Transport Rate field are reserved.

The Corrected Header Bits field is an unsigned integer indicating the number of corrected bits in the 18-bit BT Packet
Header. The valid range is 0 to 18.

The Corrected Payload Bits field is a signed integer indicating the number of errored and corrected bits in the captured
BT payload. Interpretation of this field corresponds to the Payload Transport Rate. The value ranges from 0 to
80 when the BT payload was captured at R=1/3 as per Bluetooth specification Volume 2, Part B, Section 7.4. The
value ranges from -360 to +180 when the BT payload was captured at R=2/3 as per Bluetooth specification Volume 2,
Part B, Section 7.5. A negative number indicates the field absolute value is the sum of the number of corrected and
uncorrectable bits.

The Lower Address Part field is the 24-bit value recovered from the captured SYNC WORD as defined in Bluetooth
specification Volume 2, Part B, Section 6.3.3. The most significant byte of this field is reserved and must be zero.

The Reference LAP field corresponds to the Lower Address Part configured into the capture tool that led to the
capture of this packet.

The Reference UAP field corresponds to the Upper Address Part configured into the capture tool and corresponds to
the Reference LAP.

The BT Packet Header field is the 18-bit value recovered from the packet capture, and is defined in Bluetooth speci-
fication Volume 2, Part B, Section 6.4. The most significant 14 bits are reserved and must be zero.

The Flags field represents packed bits defined as follows.

• 0x0001 indicates the BT Packet Header and BR or EDR Payload are de-whitened.

• 0x0002 indicates the Signal Power field is valid.

• 0x0004 indicates the Noise Power field is valid.

• 0x0008 indicates the BR or EDR Payload is decrypted

• 0x0010 indicates the Reference LAP is valid and led to this packet being captured

• 0x0020 indicates the BR or EDR Payload is present and follows this field

• 0x0040 indicates the RF Channel field is subject to aliasing

• 0x0080 indicates the Reference UAP field is valid for HEC and CRC checking

• 0x0100 indicates the HEC portion of the BT Packet Header was checked

• 0x0200 indicates the HEC portion of the BT Packet Header passed its check

• 0x0400 indicates the CRC portion of the BR or EDR Payload was checked

• 0x0800 indicates the CRC portion of the BR or EDR Payload passed its check

• 0x1000 indicates the MIC portion of the decrypted BR or EDR Payload was checked

• 0x2000 indicates the MIC portion of the decrypted BR or EDR Payload passed its check

All other bit positions of the Flags field are reserved and must be zero.

The decoded BR or EDR Payload optionally follows the previous fields, and is formatted as detailed in Bluetooth
specification Volume 2, Part B, Section 6. The packet is decoded per Bluetooth specification Volume 2, Part B, Section
7. All multi-octet values in the BR or EDR Payload are always expressed in little-endian format, as is the normal
Bluetooth practice.

32 Chapter 7. Bluetooth Captures in PCAP

Ubertooth

C Structure

typedef struct _pcap_bluetooth_bredr_bb_header {
uint8_t rf_channel;
int8_t signal_power;
int8_t noise_power;
uint8_t access_code_offenses;
uint8_t payload_transport_rate;
uint8_t corrected_header_bits;
int16_t corrected_payload_bits;
uint32_t lap;
uint32_t ref_lap_uap;
uint32_t bt_header;
uint16_t flags;
uint8_t br_edr_payload[0];

} pcap_bluetooth_bredr_bb_header;

7.5.2 LINKTYPE_BLUETOOTH_LE_LL_WITH_PHDR

• supplements DLT_BLUETOOTH_LE_LL which already exists but is not used for RF captures.

• only covers LE link layer packets, Bluetooth spec Vol.6 Part B.

• each packet includes a packed pseudoheader described below, followed by the LE link-layer packet consisting of
ACCESS ADDRESS, PDU, and CRC, but excluding the PREAMBLE.

– reference Bluetooth spec Vol.6 Part B sec 2 for formatting.

• not all receiver processing need be performed at capture time.

– refer to figures 3.1 of Bluetooth spec Vol 6 Part B.

– de-whitening, CRC checking, decryption, and MIC checking, are optional.

– flags in the pseudo-header indicate which of these have been performed.

– none of these optional processing steps affect the length of the stored packet data.

Packet Structure

+---------------------------+
| RF Channel |
| (1 Octet) |
+---------------------------+
| Signal Power |
| (1 Octet) |
+---------------------------+
| Noise Power |
| (1 Octet) |
+---------------------------+
| Access Address Offenses |
| (1 Octet) |
+---------------------------+
| Reference Access Address |

(continues on next page)

7.5. Allocated DLTs 33

Ubertooth

(continued from previous page)

| (4 Octets) |
+---------------------------+
| Flags |
| (2 Octets) |
+---------------------------+
| LE Packet (no preamble) |
. .
. .
. .

Description

All multi-octet fields are expressed in little-endian format. Fields with a corresponding Flags bit are only considered
valid when the bit is set.

The RF Channel field ranges 0 to 39. It reflects the value described in the Bluetooth specification Volume 6, Part A,
Section 2.

The Signal Power and Noise Power fields are signed integers expressing values in dBm.

The Access Address Offenses field is an unsigned integer indicating the number of deviations from the valid access
address that led to the packet capture. Access addresses are interpreted as described in Bluetooth specification Volume
6, Part B, Section 2.1.2.

The Reference Access Address field corresponds to the Access Address configured into the capture tool that led to the
capture of this packet.

The Flags field represents packed bits defined as follows.

• 0x0001 indicates the LE Packet is de-whitened.

• 0x0002 indicates the Signal Power field is valid.

• 0x0004 indicates the Noise Power field is valid.

• 0x0008 indicates the LE Packet is decrypted.

• 0x0010 indicates the Reference Access Address is valid and led to this packet being captured.

• 0x0020 indicates the Access Address Offenses field contains valid data.

• 0x0040 indicates the RF Channel field is subject to aliasing.

• 0x0400 indicates the CRC portion of the LE Packet was checked.

• 0x0800 indicates the CRC portion of the LE Packet passed its check.

• 0x1000 indicates the MIC portion of the decrypted LE Packet was checked.

• 0x2000 indicates the MIC portion of the decrypted LE Packet passed its check.

All other bit positions of the Flags field are reserved and must be zero.

The LE Packet follows the previous fields, and is formatted as detailed in Bluetooth specification Volume 6, Part
B, Section 2, but does not include the preamble. All multi-octet values in the LE Packet are always expressed in
little-endian format, as is the normal Bluetooth practice.

34 Chapter 7. Bluetooth Captures in PCAP

Ubertooth

C Structure

typedef struct _pcap_bluetooth_le_ll_header {
uint8_t rf_channel;
int8_t signal_power;
int8_t noise_power;
uint8_t access_address_offenses;
uint32_t ref_access_address;
uint16_t flags;
uint8_t le_packet[0];

} pcap_bluetooth_le_ll_header;

7.5. Allocated DLTs 35

Ubertooth

36 Chapter 7. Bluetooth Captures in PCAP

CHAPTER

EIGHT

HISTORY

The first hardware revision is called Ubertooth Zero and was demonstrated at ToorCon 12 on October 24th, 2010.
Ubertooth Zero has been superseded.

The current hardware revision is called Ubertooth One and was demonstrated at ShmooCon 7 on January 29th, 2011.

37

Ubertooth

38 Chapter 8. History

CHAPTER

NINE

UBERTOOTH COMMUNITY PROJECTS AND MENTIONS

Have you done something cool with Ubertooth or mentioned Ubertooth in one of your presentations? Let us know and
we might post a link here!

39

Ubertooth

40 Chapter 9. Ubertooth Community Projects and Mentions

CHAPTER

TEN

BUILDING FROM GIT

10.1 Prerequisites

There are some prerequisites that need to be installed before building libbtbb and the Ubertooth tools. Many of these
are available from your operating system’s package repositories, for example:

10.1.1 Debian/Ubuntu

sudo apt-get install git cmake libusb-1.0-0-dev make gcc g++ libbluetooth-dev \
pkg-config libpcap-dev python-numpy python-pyside python-qt4

10.1.2 Fedora / Red Hat

su -c "yum install git libusb1-devel make gcc wget tar bluez-libs-devel"

10.1.3 Mac OS X users can use either MacPorts or Homebrew to install the required
packages:

sudo port install git libusb wget cmake python27 py27-numpy py27-pyside
or
brew install git libusb wget cmake pkg-config homebrew/dupes/libpcap

10.2 libbtbb

Next the Bluetooth baseband library (libbtbb) needs to be built for the Ubertooth tools to decode Bluetooth packets:

git clone https://github.com/greatscottgadgets/libbtbb.git
cd libbtbb
mkdir build
cd build
cmake ..
make
sudo make install

Linux users: if you are installing for the first time, or you receive errors about finding the library, you should run:

41

Ubertooth

sudo ldconfig

10.3 Ubertooth tools

The Ubertooth repository contains host code for sniffing Bluetooth packets, configuring the Ubertooth and updating
firmware. All three are built and installed by default using the following method:

git clone https://github.com/greatscottgadgets/ubertooth.git
cd ubertooth/host
mkdir build
cd build
cmake ..
make
sudo make install

Linux users: if you are installing for the first time, or you receive errors about finding the library, you should run:

sudo ldconfig

10.4 Wireshark

Wireshark version 1.12 and newer includes the Ubertooth BLE plugin by default. It is also possible to capture BLE
from Ubertooth directly into Wireshark with a little work.

The Wireshark BTBB and BR/EDR plugins allow Bluetooth baseband traffic that has been captured using Kismet to be
analysed and disected within the Wireshark GUI. They are built separately from the rest of the Ubertooth and libbtbb
software. The directory passed to cmake as MAKE_INSTALL_LIBDIR varies from system to system, but it should be
the location of existing Wireshark plugins, such as asn1.so and ethercat.so.

sudo apt-get install wireshark wireshark-dev libwireshark-dev cmake
cd libbtbb/wireshark/plugins/btbb
mkdir build
cd build
cmake -DCMAKE_INSTALL_LIBDIR=/usr/lib/x86_64-linux-gnu/wireshark/libwireshark3/
→˓plugins ..
make
sudo make install

Then repeat for the BT BR/EDR plugin:

sudo apt-get install wireshark wireshark-dev libwireshark-dev cmake
cd libbtbb/wireshark/plugins/btbredr
mkdir build
cd build
cmake -DCMAKE_INSTALL_LIBDIR=/usr/lib/x86_64-linux-gnu/wireshark/libwireshark3/
→˓plugins ..
make
sudo make install

42 Chapter 10. Building from git

https://ubertooth.readthedocs.io/en/latest/capturing_BLE_Wireshark.html
https://ubertooth.readthedocs.io/en/latest/capturing_BLE_Wireshark.html

Ubertooth

10.5 Third Party Software

There are a number of pieces of third party software that support the Ubertooth. Some support Ubertooth out of the
box, while others require plugins to be built.

10.6 Firmware

This completes the install of the Ubertooth tools, the next step is to look at the getting started guide. You should always
update the firmware on the Ubertooth device to match the software release version that you are using.

10.5. Third Party Software 43

https://ubertooth.readthedocs.io/en/latest/third_party_software.html
https://ubertooth.readthedocs.io/en/latest/firmware.html

Ubertooth

44 Chapter 10. Building from git

CHAPTER

ELEVEN

SOFTWARE

11.1 Building and Running Ubertooth Software

For information on how to download, build and install the Ubertooth software and dependencies, see the build guide.

For an introduction on the capabilities of Ubertooth and how to use it, see the getting started page.

11.2 Developing Host Code

Host code is the software running on a host computer to which an Ubertooth One is attached via USB.

The Ubertooth developers use GCC on Linux. We aim to have the host code work on OSX systems, but we cannot
guarantee it; if you find a bug, please let us know. Theoretically, host code could be written on or for other platforms,
but it hasn’t been done yet.

Although source can be found in the release downloads, you will probably want fresh code from git if you plan to
develop new code.

45

https://ubertooth.readthedocs.io/en/latest/build_guide.html
https://ubertooth.readthedocs.io/en/latest/getting_started.html
https://github.com/greatscottgadgets/ubertooth/issues
https://github.com/greatscottgadgets/ubertooth/releases
https://github.com/greatscottgadgets/ubertooth

Ubertooth

46 Chapter 11. Software

CHAPTER

TWELVE

THIRD PARTY SOFTWARE

The following are third party applications that support Ubertooth One, either natively or with plugins. Unless otherwise
stated, the Ubertooth project does not provide support these applications.

12.1 Kismet

The version of kismet provided by Debian/Ubuntu is 2008-05-R1, which is too old to support the Ubertooth plugin.
In order to use Ubertooth with Kismet it is necessary to compile Kismet from source. First make sure that you have
completed the instruction in the build guide and then use the following instruction to build Kismet:

sudo apt-get install libpcap0.8-dev libcap-dev pkg-config build-essential␣
→˓libnl-3-dev libncurses-dev libpcre3-dev libpcap-dev libcap-dev libnl-genl-3-
→˓dev
wget https://kismetwireless.net/code/kismet-2013-03-R1b.tar.xz
tar xf kismet-2013-03-R1b.tar.xz
cd kismet-2013-03-R1b
ln -s ../ubertooth-2015-10-R1/host/kismet/plugin-ubertooth .
./configure
make && make plugins
sudo make suidinstall
sudo make plugins-install
Add "pcapbtbb" to the "logtypes=..." line in kismet.conf

Support for the Kismet is provided by the Kismet project, but the plugins are part of the Ubertooth software releases.
For queries about the Ubertooth plugins please see the getting help page.

12.2 Flying Squirrel

Flying Squirrel has built in support for Ubertooth. Unfortunately Flying Squirrel is not available to the general public.
“Flying Squirrel is only available to DOD and federal agencies.” this was the reply when one tried to request the
download to fsadmin@nrl.navy.mil.

47

https://ubertooth.readthedocs.io/en/latest/build_guide.html
https://ubertooth.readthedocs.io/en/latest/getting_help.html
http://www.nrl.navy.mil/itd/chacs/5545/flying-squirrel
mailto:fsadmin@nrl.navy.mil

Ubertooth

12.3 Spectools

Spectools is a very useful 2.4GHz spectrum monitor, showing multiple views of spectrum usage. Spectools supports
Ubertooth if built from git.

48 Chapter 12. Third Party Software

https://www.kismetwireless.net/spectools

CHAPTER

THIRTEEN

FIRMWARE

13.1 How To Update Firmware

First, grab the latest Ubertooth release. Then, extract the archive and change into directory
ubertooth-one-firmware-bin.

You may then run the ubertooth-dfu command like so:

$ ubertooth-dfu -d bluetooth_rxtx.dfu -r
Switching to DFU mode...
Checking firmware signature
..
..
................

The device will automatically enter DFU mode and flash the firmware.

If you see control message unsupported at the end, this means that resetting the device failed. You can handle
this by running ubertooth-util -r or just unplugging the USB cable from the Ubertooth and reconnecting it.

Troubleshooting:

If you run into an error such as “libUSB Error: Command Error: (-1)” or the Ubertooth’s 4 LEDs next to each other per-
form a distinctive chasing pattern, after extracting the archive of the latest Ubertooth release, change into the firmware
directory. Then, run:

make clean all && make
ubertooth-dfu -r -d bluetooth_rxtx/bluetooth_rxtx.dfu

If your Ubertooth Ones has no firmware or broken firmware and doesn’t show up when issuing lsusb, you can force
the Ubertooth One into DFU mode by connecting pins 1 and 3 on the EXPAND header (P4):

49

https://github.com/greatscottgadgets/ubertooth/releases/latest

Ubertooth

You should see the following appear in dmesg:

[1323.391369] usb 1-10: new full-speed USB device number 7 using xhci_hcd
[1323.541063] usb 1-10: New USB device found, idVendor=1d50, idProduct=6002,␣
→˓bcdDevice= 1.05
[1323.541069] usb 1-10: New USB device strings: Mfr=1, Product=2,␣
→˓SerialNumber=3
[1323.541073] usb 1-10: Product: Ubertooth One
[1323.541077] usb 1-10: Manufacturer: Great Scott Gadgets
[1323.541080] usb 1-10: SerialNumber: 07b00004c81435ae82624953861e00f5
[1341.978766] usb 1-10: USB disconnect, device number 7

The device will only stay in dfu mode for a few seconds, so you have to quickly issue the ubertooth-dfu command to
flash.

13.1.1 What Version Am I Running?

In non-DFU mode, you can obtain firmware information with ubertooth-util -v. Note that the version shown
should match the one you just installed:

$ ubertooth-util -v
Firmware version: 2018-12-R1 (API:1.05)
$ ubertooth-util -V
ubertooth 2018-12-R1 (mikeryan@steel) Tue Aug 7 15:33:06 PDT 2018

50 Chapter 13. Firmware

Ubertooth

13.1.2 Developing Firmware

You’ll need a toolchain that supports ARM Cortex-M3. The Makefiles in the firmware directory are designed for
GCC and a Linux-based toolchain, specifically arm-none-eabi-gcc and libnewlib-arm-none-eabi. If you are
running a Debian based distribution, you can run:

apt-get install gcc-arm-none-eabi libnewlib-arm-none-eabi

Otherwise it can be downloaded from https://launchpad.net/gcc-arm-embedded, just unpack the archive and add the
bin directory to your PATH.

To build the firmware, start from the directory where you cloned or unpacked the source and run the following:

cd firmware/bluetooth_rxtx/
make

This will produce a file named bluetooth_rxtx.dfu which can be written to the Ubertooth using

ubertooth-dfu -d bluetooth_rxtx.dfu -r

Although firmware source and binary images can be found in the release downloads, you will probably want fresh code
from git if you are planning to modify the firmware.

13.1. How To Update Firmware 51

https://launchpad.net/gcc-arm-embedded

Ubertooth

52 Chapter 13. Firmware

CHAPTER

FOURTEEN

PROGRAMMING

This page describes how to load compiled firmware onto an Ubertooth One. Other pages describe how to write firmware
or host code for the platform.

There are three ways to program an Ubertooth board: the USB bootloader, the ISP bootloader, and JTAG.

Please note that it is not possible to replace the board’s USB bootloader via ubertooth-dfu as there is software protection
in place.

14.1 USB bootloader

This is the recommended method of loading code onto an Ubertooth Zero or Ubertooth One provided that the USB
bootloader is already installed (at the time of manufacture, for example). If you need to install the bootloader itself,
you will have to use either ISP or JTAG.

The bootloader executes every time the device starts up from reset or power cycle. Normally it just gets out of the way
and passes control to the application firmware very quickly. Alternatively it can enter Device Firmware Upgrade (DFU)
mode which permits firmware upload and download over USB. There are two ways to tell the bootloader that you want
it to enter DFU mode:

1. soft bootloader entry: By setting a flag in RAM, the application firmware can instruct the bootloader to enter
DFU mode following a reset (without loss of power). For example, with the bluetooth_rxtx firmware running
you can trigger a reset into DFU mode using ‘ubertooth-util -f’ (located in host/bluetooth_rxtx/). Soft entry only
works on Ubertooth One, not Ubertooth Zero.

2. hard bootloader entry (also known as pin entry): By connecting two pins (for Ubertooth Zero it’s pin 1 and 3) on
the expansion header with a jumper during reset (either soft or hard boot), you can force the bootloader into DFU
mode. When using pin entry, the bootloader will enter DFU mode for only a few seconds and will then execute
the application if no DFU activity has started during that period. This allows developers to permanently or semi-
permanently jumper the pins providing a DFU opportunity on every reset. This method works on Ubertooth One
but not Ubertooth Zero.

The bootloader indicates DFU mode by flashing the LEDs in a distinctive pattern. It also identifies itself as
“usb_bootloader” on USB.

During DFU mode, firmware may be uploaded or downloaded using ubertooth-dfu.

It is possible that soft bootloader entry may be broken by installing a faulty application or an application that does not
provide a method of triggering soft entry. In this case, pin entry must be used (e.g. by holding a paper clip in the
expansion header while plugging in the device) to “unbrick” the unit.

For Ubertooth One, the pins to connect are pins 1 and 3 of the expansion header (P4). For Ubertooth Zero, the pins to
connect are pins 1 and 13 of the expansion header (J1).

53

https://ubertooth.readthedocs.io/en/latest/firmware.html
https://ubertooth.readthedocs.io/en/latest/software.html

Ubertooth

14.2 ISP bootloader

The LPC175x features an In-System Programming (ISP) bootloader that allows code to be loaded over a serial interface.
In order to use ISP, you will need lpc21isp and a 3.3V serial programming device such as one of the following:

14.2.1 Pogoprog

The official Ubertooth ISP programmer is Pogoprog, an open source board that can be assembled using a process
similar to Ubertooth One assembly.

14.2.2 An FTDI Basic Breakout - 3.3V

You can use SparkFun’s FTDI Basic Breakout - 3.3V to program an Ubertooth. Adafruit’s FTDI Friend is a similar
board that should work as well. To allow lpc21isp to automatically activate the LPC175x’s ISP bootloader, you must
modify the board in one of two ways.

Method one: the easy way

Just short the CTS pin to GND. This will force the microcontroller into ISP mode every time it resets while the pro-
grammer is connected. In order to perform a normal reset to run the newly loaded code, you will have to first disconnect
the programmer.

Method two: the better way

Connect the CTS pin to the RTS pin (pin 3) on the FT232RL using fine gauge wire such as wire wrap wire. This is
trickier to solder, but it has the advantage that the pin will be fully controlled by lpc21isp. This means that you can
leave the programmer connected to the Ubertooth board throughout multiple program/test cycles.

54 Chapter 14. Programming

http://sourceforge.net/projects/lpc21isp
http://www.sparkfun.com/products/9873
http://www.adafruit.com/index.php?main_page=product_info&products_id=284

Ubertooth

Using ISP

Warning: Code loaded via ISP will blow away the bootloader. It is generally recommended to use this method only for
installing the bootloader itself.

Connect your serial programmer to the Ubertooth board and type “make program” in the firmware source code directory.
If you have a precompiled binary in .hex format, you can invoke lpc21isp directly with “lpc21isp -control firmware.hex
/dev/ttyUSB0 230400 4000” (replacing firmware.hex with the firmware filename and /dev/ttyUSB0 with the device file
of your serial programmer.

14.2.3 JTAG

Warning: Code loaded via JTAG will blow away the bootloader. It is generally recommended to use this method only
for installing the bootloader itself.

Connect your ARM Cortex-M3 JTAG debugger (such as one supported by OpenOCD) to the standard Cortex Debug
Connector on the Ubertooth One or the non-standard JTAG connector on the Ubertooth Zero. You know what to do.

14.2. ISP bootloader 55

http://openocd.berlios.de/web

Ubertooth

56 Chapter 14. Programming

CHAPTER

FIFTEEN

ASSEMBLING HARDWARE

The quickest and easiest way to get Ubertooth hardware is to buy it. A list of resellers is available from the Great Scott
Gadgets website. If you choose to build your own hardware, the following steps should help.

15.1 Step 0: read these instructions

Seriously. There are probably things in the later steps that you should know about before getting started.

15.2 Step 1: order a PCB

You will need a four layer printed circuit board. We recommend using OSH Park. Take the Ubertooth One Gerber files
from the most recent Project Ubertooth release package (or generate them with KiCad) and send them to your chosen
PCB manufacturer. The board is 1.8 square inches, so it will cost ~$18 per set of three. That’s one for yourself, one for
a friend, and one to screw up! Pogoprog is a two layer board.

If you are building an Ubertooth One, you should also consider building a Pogoprog unless you already have a plan for
how you will program your board.

15.3 Step 2: order a stencil

Surface mount soldering is fun and easy if you use a stencil to apply solder paste to your circuit board! Send the
top paste Gerber file (ubertooth-one-SoldP_Front.gtp) to a stencil manufacturer such as OHARARP, OSH Stencils, or
Pololu. Alternatively you might plan to use a syringe or a toothpick to apply solder paste, but this is not recommended.
You might instead just use a soldering iron, but this is strongly discouraged unless you have successfully soldered QFNs
with required ground pads before (and, if you have, you probably aren’t reading these instructions anyway).

15.4 Step 3: order the parts

Take the bill of materials (bom) from the most recent Project Ubertooth release (or generate it with KiCad) and order
the parts. The parts should all be available from one or more online electronics suppliers such as Mouser or Digi-key. It
is important to order some extra parts (especially the tiny ones which fortunately are cheap) in case you lose or damage
any components.

You may want to order an antenna too. The Pulse W1030 is a nice size, but you can also find compatible antennas on
many commercial Wi-Fi and Bluetooth products. Most any antenna intended for the 2.4 GHz band (such as 802.11b/g/n)
is suitable as long as it has an RP-SMA connector, adapter, or pigtail. You could choose an SMA connector instead

57

http://greatscottgadgets.com/ubertoothone/
http://greatscottgadgets.com/ubertoothone/
https://oshpark.com/
https://ubertooth.readthedocs.io/en/latest/programming.html
http://ohararp.com/stencils
https://www.oshstencils.com/
https://www.pololu.com/product/446
http://www.mouser.com/
http://www.digikey.com/
http://www.pulseelectronics.com/products/old_antennas/products__solutions/antennas_for_wireless_devices/wd_antennas/w1030_external_24_ghz_high_gain_short

Ubertooth

of RP-SMA; this might especially be convenient for interfacing with benchtop test gear. RP-SMA was selected as the
default choice for Project Ubertooth because there are more RP-SMA than SMA antennas floating around on consumer
Wi-Fi and Bluetooth gear.

You might prefer to select alternative parts, but be careful of the 1% resistors and all of the 0402 inductors and capacitors
in the RF section which have been selected for their particular characteristics. Any LPC175x microcontroller will do,
but it is recommended that you choose one with at least 128 kB RAM. And, really, if you’re going through all this
trouble, why not go with 512 kB?

15.5 Step 4: prepare your tools and materials

Essential:

• an electric skillet, one that you don’t intend to use for food ever again

• solder paste (no-clean lead-based solder paste is recommended)

• a small putty knife or razor blade

• fine tipped tweezers

• any soldering iron

• solder

Strongly recommended:

• good ventilation

• a temperature controlled soldering iron: this is more than just having a knob; it should have a temperature sensor
in the iron

• an embossing tool or other high temperature heat gun (even better: a proper hot air rework station)

• a multitester with LED/diode test mode

• desoldering braid

• brass sponge

• helping hands

• magnifying glass

15.6 Step 5: apply solder paste

Using your stencil and a putty knife, apply the solder paste as described in this tutorial.

58 Chapter 15. Assembling Hardware

https://www.sparkfun.com/tutorials/58

Ubertooth

15.7 Step 6: place the parts

With fine tipped tweezers, carefully place the parts on the board. If you have to move a part, pick it up and place it
again rather than sliding it around a lot. Otherwise the paste can get out of place. Most of the 0402 and 0603 parts can
be placed in either direction, but the LEDs are exceptions. You must place them with ground in the direction of the
arrow on the circuit board. You may have to look at the design in KiCad to see which way the arrow goes, and you’ll
probably have to test your LEDs with a multitester to find out which side is which. Don’t populate USB connectors,
RP-SMA connectors, or pogo pins (in the case of Pogoprog) at this time.

15.8 Step 7: reflow

Carefully place the board in the electric skillet, and turn the skillet on. It is best to warm up the board to a moderate
temperature before turning the skillet up to full power. Then turn up the heat until you can see the solder flow. If you
see parts moving around to incorrect positions, resist the temptation to correct them at this time! As soon as the solder
everywhere on the board appears liquid, cut the power completely. You may want to lift the board out of the skillet with
a spatula at this point to allow it to cool faster. There is a danger of overheating the components, but this is unlikely
unless you left the skillet on longer than necessary or used lead-free solder paste.

15.9 Step 8: rework

Here is where the embossing tool, a good soldering iron, desoldering braid, and a magnifying glass come in very handy.
If there is anything wrong with the assembly, you will have to correct individual part placement as needed.

15.10 Step 9: inspection

Once all the parts appear to be soldered in place correctly, look again, this time with a magnifying glass. You should
also do some continuity tests with a multitester at this point. Watch out in particular for supply shorts; the easiest way
to test for these is to verify a lack of continuity across bypass capacitors (all the caps that are close to the ICs). If there
is a short that you can’t see, it is probably under the pins of one of the ICs. Repeat steps 7 and 8 as necessary.

15.11 Step 10: hand soldering

There are a few parts that you should solder on by hand with an iron at this point. These are the USB and RP-SMA
connectors on the Ubertooth boards and the pogo pins on Pogoprog.

15.12 Step 11: power-on test

Power on the device by plugging in the USB connection. An Ubertooth One or Zero should illuminate the RST LED. If
this doesn’t happen, quickly unplug USB verify that the LED is oriented correctly, and go back to step 9. A Pogoprog
should flash its TX and RX LEDs during USB enumeration. If this doesn’t happen, quickly unplug USB, verify the
LED orientations, check your driver situation, and go back to step 8.

15.7. Step 6: place the parts 59

Ubertooth

15.13 Step 12: further testing

If you are building a Pogoprog, you should make sure that an FTDI USB serial adapter has been detected by your host
operating system. If so, you can try using it to program an Ubertooth board. If you are making an Ubertooth board,
you should follow the procedure in firmware/assembly_test/README.

15.14 Step 13: boast

Tell us about your success on the Great Scott Gadgets Discord.

60 Chapter 15. Assembling Hardware

https://ubertooth.readthedocs.io/en/latest/programming.html
https://discord.gg/rsfMw3rsU8

CHAPTER

SIXTEEN

RELEASE 2015-10-R1

16.1 Prerequisites

There are some prerequisites that need to be installed before building libbtbb and the Ubertooth tools. Many of these
are available from your operating system’s package repositories, for example:

16.1.1 Debian/Ubuntu

sudo apt-get install cmake libusb-1.0-0-dev make gcc g++ libbluetooth-dev \
pkg-config libpcap-dev python-numpy python-pyside python-qt4

16.1.2 Fedora / Red Hat

su -c "yum install libusb1-devel make gcc wget tar bluez-libs-devel"

16.1.3 Mac OS X users can use either MacPorts or Homebrew to install the required
packages:

sudo port install libusb wget cmake python27 py27-numpy py27-pyside
or
brew install libusb wget cmake pkg-config homebrew/dupes/libpcap

16.2 libbtbb

Next the Bluetooth baseband library (libbtbb) needs to be built for the Ubertooth tools to decode Bluetooth packets:

wget https://github.com/greatscottgadgets/libbtbb/archive/2015-10-R1.tar.gz -O␣
→˓libbtbb-2015-10-R1.tar.gz
tar xf libbtbb-2015-10-R1.tar.gz
cd libbtbb-2015-10-R1
mkdir build
cd build
cmake ..

(continues on next page)

61

Ubertooth

(continued from previous page)

make
sudo make install

Linux users: if you are installing for the first time, or you receive errors about finding the library, you should run:

sudo ldconfig

16.3 Wireshark

Wireshark version 1.12 and newer includes the Ubertooth BLE plugin by default. It is also possible to capture BLE
from Ubertooth directly into Wireshark with a little work.

The Wireshark BTBB and BR/EDR plugins allow Bluetooth baseband traffic that has been captured using Kismet to be
analysed and disected within the Wireshark GUI. They are built separately from the rest of the Ubertooth and libbtbb
software. The directory passed to cmake as MAKE_INSTALL_LIBDIR varies from system to system, but it should be
the location of existing Wireshark plugins, such as asn1.so and ethercat.so.

sudo apt-get install wireshark wireshark-dev libwireshark-dev cmake
cd libbtbb-2015-10-R1/wireshark/plugins/btbb
mkdir build
cd build
cmake -DCMAKE_INSTALL_LIBDIR=/usr/lib/x86_64-linux-gnu/wireshark/libwireshark3/
→˓plugins ..
make
sudo make install

Then repeat for the BT BR/EDR plugin:

sudo apt-get install wireshark wireshark-dev libwireshark-dev cmake
cd libbtbb-2015-10-R1/wireshark/plugins/btbredr
mkdir build
cd build
cmake -DCMAKE_INSTALL_LIBDIR=/usr/lib/x86_64-linux-gnu/wireshark/libwireshark3/
→˓plugins ..
make
sudo make install

16.4 Third Party Software

There are a number of pieces of third party software that support the Ubertooth. Some support Ubertooth out of the
box, while others require plugins to be built.

62 Chapter 16. Release 2015-10-R1

https://ubertooth.readthedocs.io/en/latest/capturing_BLE_Wireshark.html
https://ubertooth.readthedocs.io/en/latest/capturing_BLE_Wireshark.html
https://ubertooth.readthedocs.io/en/latest/third_party_software.html

Ubertooth

16.4.1 Firmware

This completes the install of the Ubertooth tools, the next step is to look at the getting started guide. You should always
update the firmware on the Ubertooth device to match the software release version that you are using.

16.4. Third Party Software 63

https://ubertooth.readthedocs.io/en/latest/firmware.html

Ubertooth

64 Chapter 16. Release 2015-10-R1

CHAPTER

SEVENTEEN

RELEASE 2017-03-R2

for Release 2015-10-R1 see here

17.1 Prerequisites

There are some prerequisites that need to be installed before building libbtbb and the Ubertooth tools. Many of these
are available from your operating system’s package repositories, for example:

Debian / Ubuntu

sudo apt-get install cmake libusb-1.0-0-dev make gcc g++ libbluetooth-dev \
pkg-config libpcap-dev python-numpy python-pyside python-qt4

Fedora / Red Hat

su -c "yum install libusb1-devel make gcc wget tar bluez-libs-devel"

Mac OS X users can use either MacPorts or Homebrew to install the required packages:

sudo port install libusb wget cmake python27 py27-numpy py27-pyside
or
brew install libusb wget cmake pkg-config libpcap

FreeBSD users can install the host tools and library directly from the ports and package system:

sudo pkg install ubertooth

17.2 libbtbb

Next the Bluetooth baseband library (libbtbb) needs to be built for the Ubertooth tools to decode Bluetooth packets:

wget https://github.com/greatscottgadgets/libbtbb/archive/2017-03-R2.tar.gz -O␣
→˓libbtbb-2017-03-R2.tar.gz
tar xf libbtbb-2017-03-R2.tar.gz
cd libbtbb-2017-03-R2
mkdir build
cd build
cmake ..

(continues on next page)

65

https://ubertooth.readthedocs.io/en/latest/Release_2015-10-R1.html

Ubertooth

(continued from previous page)

make
sudo make install

Linux users: if you are installing for the first time, or you receive errors about finding the library, you should run:

sudo ldconfig

17.3 Ubertooth tools

The Ubertooth repository contains host code for sniffing Bluetooth packets, configuring the Ubertooth and updating
firmware. All three are built and installed by default using the following method:

wget https://github.com/greatscottgadgets/ubertooth/releases/download/2017-03-
→˓R2/ubertooth-2017-03-R2.tar.xz -O ubertooth-2017-03-R2.tar.xz
tar xf ubertooth-2017-03-R2.tar.xz
cd ubertooth-2017-03-R2/host
mkdir build
cd build
cmake ..
make
sudo make install

Linux users: if you are installing for the first time, or you receive errors about finding the library, you should run:

sudo ldconfig

17.4 Wireshark

Wireshark version 1.12 and newer includes the Ubertooth BLE plugin by default. It is also possible to capture BLE
from Ubertooth directly into Wireshark with a little work.

The Wireshark BTBB and BR/EDR plugins allow Bluetooth baseband traffic that has been captured using Kismet to be
analysed and disected within the Wireshark GUI. They are built separately from the rest of the Ubertooth and libbtbb
software. The directory passed to cmake as MAKE_INSTALL_LIBDIR varies from system to system, but it should be
the location of existing Wireshark plugins, such as asn1.so and ethercat.so.

sudo apt-get install wireshark wireshark-dev libwireshark-dev cmake
cd libbtbb-2017-03-R2/wireshark/plugins/btbb
mkdir build
cd build
cmake -DCMAKE_INSTALL_LIBDIR=/usr/lib/x86_64-linux-gnu/wireshark/libwireshark3/
→˓plugins ..
make
sudo make install

Then repeat for the BT BR/EDR plugin:

sudo apt-get install wireshark wireshark-dev libwireshark-dev cmake
cd libbtbb-2017-03-R2/wireshark/plugins/btbredr

(continues on next page)

66 Chapter 17. Release 2017-03-R2

https://ubertooth.readthedocs.io/en/latest/capturing_BLE_Wireshark.html
https://ubertooth.readthedocs.io/en/latest/capturing_BLE_Wireshark.html

Ubertooth

(continued from previous page)

mkdir build
cd build
cmake -DCMAKE_INSTALL_LIBDIR=/usr/lib/x86_64-linux-gnu/wireshark/libwireshark3/
→˓plugins ..
make
sudo make install

17.5 Third Party Software

There are a number of pieces of third party software that support the Ubertooth. Some support Ubertooth out of the
box, while others require plugins to be built.

17.5.1 Firmware

This completes the install of the Ubertooth tools, the next step is to look at the getting started guide. You should always
update the firmware on the Ubertooth device to match the software release version that you are using.

17.5. Third Party Software 67

https://ubertooth.readthedocs.io/en/latest/third_party_software.html
https://ubertooth.readthedocs.io/en/latest/firmware.html

Ubertooth

68 Chapter 17. Release 2017-03-R2

CHAPTER

EIGHTEEN

RELEASE 2018-08-R1: THE DEFCON RELEASE

for Release 2017-03-R2 see here

18.1 Preequisites

There are some prerequisites that need to be installed before building libbtbb and the Ubertooth tools. Many of these
are available from your operating system’s package repositories, for example:

Debian / Ubuntu

sudo apt-get install cmake libusb-1.0-0-dev make gcc g++ libbluetooth-dev \
pkg-config libpcap-dev python-numpy python-pyside python-qt4

Fedora / Red Hat

su -c "yum install libusb1-devel make gcc wget tar bluez-libs-devel"s

Mac OS X users can use either MacPorts or Homebrew to install the required packages:

brew install libusb wget cmake pkg-config libpcap
or
sudo port install libusb wget cmake python27 py27-numpy py27-pyside

FreeBSD users can install the host tools and library directly from the ports and package system:

sudo pkg install ubertooth

18.2 libbtbb

Next the Bluetooth baseband library (libbtbb) needs to be built for the Ubertooth tools to decode Bluetooth packets:

wget https://github.com/greatscottgadgets/libbtbb/archive/2018-08-R1.tar.gz -O␣
→˓libbtbb-2018-08-R1.tar.gz
tar -xf libbtbb-2018-08-R1.tar.gz
cd libbtbb-2018-08-R1
mkdir build
cd build
cmake ..

(continues on next page)

69

https://ubertooth.readthedocs.io/en/latest/Release_2017_03_R2.html

Ubertooth

(continued from previous page)

make
sudo make install

Linux users: if you are installing for the first time, or you receive errors about finding the library, you should run:

sudo ldconfig

18.3 Ubertooth tools

The Ubertooth repository contains host code for sniffing Bluetooth packets, configuring the Ubertooth and updating
firmware. All three are built and installed by default using the following method:

wget https://github.com/greatscottgadgets/ubertooth/releases/download/2018-08-
→˓R1/ubertooth-2018-08-R1.tar.xz
tar xf ubertooth-2018-08-R1.tar.xz
cd ubertooth-2018-08-R1/host
mkdir build
cd build
cmake ..
make
sudo make install

Linux users: if you are installing for the first time, or you receive errors about finding the library, you should run:

sudo ldconfig

18.4 Wireshark

Wireshark version 1.12 and newer includes the Ubertooth BLE plugin by default. It is also possible to capture BLE
from Ubertooth directly into Wireshark with a little work.

The Wireshark BTBB and BR/EDR plugins allow Bluetooth baseband traffic that has been captured using Kismet to be
analysed and disected within the Wireshark GUI. They are built separately from the rest of the Ubertooth and libbtbb
software.

The directory passed to cmake as MAKE_INSTALL_LIBDIR varies from system to system, but it should be the loca-
tion of existing Wireshark plugins, such as asn1.so and ethercat.so. On macOS this is likely /Applications/
Wireshark.app/Contents/PlugIns/wireshark/.

sudo apt-get install wireshark wireshark-dev libwireshark-dev cmake
cd libbtbb-2018-08-R1/wireshark/plugins/btbb
mkdir build
cd build
cmake -DCMAKE_INSTALL_LIBDIR=/usr/lib/x86_64-linux-gnu/wireshark/libwireshark3/
→˓plugins ..
make
sudo make install

Then repeat for the BT BR/EDR plugin:

70 Chapter 18. Release 2018-08-R1: the DEFCON release

https://ubertooth.readthedocs.io/en/latest/capturing_BLE_Wireshark.html
https://ubertooth.readthedocs.io/en/latest/capturing_BLE_Wireshark.html

Ubertooth

sudo apt-get install wireshark wireshark-dev libwireshark-dev cmake
cd libbtbb-2018-08-R1/wireshark/plugins/btbredr
mkdir build
cd build
cmake -DCMAKE_INSTALL_LIBDIR=/usr/lib/x86_64-linux-gnu/wireshark/libwireshark3/
→˓plugins ..
make
sudo make install

18.5 Third Party Software

There are a number of pieces of third party software that support the Ubertooth. Some support Ubertooth out of the
box, while others require plugins to be built.

18.5.1 Firmware

This completes the install of the Ubertooth tools, the next step is to look at the getting started guide. You should always
update the firmware on the Ubertooth device to match the software release version that you are using.

18.5. Third Party Software 71

https://ubertooth.readthedocs.io/en/latest/third_party_software.html
https://ubertooth.readthedocs.io/en/latest/firmware.html

Ubertooth

72 Chapter 18. Release 2018-08-R1: the DEFCON release

CHAPTER

NINETEEN

RELEASE 2018-12-R1

19.1 Prerequisites

There are some prerequisites that need to be installed before building libbtbb and the Ubertooth tools. Many of these
are available from your operating system’s package repositories, for example:

Debian / Ubuntu / Kali

sudo apt-get install cmake libusb-1.0-0-dev make gcc g++ libbluetooth-dev \
pkg-config python3-numpy python3-qtpy

Fedora / Red Hat

su -c "yum install libusb1-devel make gcc wget tar bluez-libs-devel"

Mac OS X users can use either MacPorts or Homebrew to install the required packages:

brew install libusb wget cmake pkg-config
or
sudo port install libusb wget cmake python38 py38-numpy py38-qtpy

FreeBSD users can install the host tools and library directly from the ports and package system:

sudo pkg install ubertooth

19.2 libbtbb

Next the Bluetooth baseband library (libbtbb) needs to be built for the Ubertooth tools to decode Bluetooth packets:

wget https://github.com/greatscottgadgets/libbtbb/archive/2018-12-R1.tar.gz -O␣
→˓libbtbb-2018-12-R1.tar.gz
tar -xf libbtbb-2018-12-R1.tar.gz
cd libbtbb-2018-12-R1
mkdir build
cd build
cmake ..
make
sudo make install

Linux users: if you are installing for the first time, or you receive errors about finding the library, you should run:

73

Ubertooth

sudo ldconfig

19.3 Ubertooth tools

The Ubertooth repository contains host code for sniffing Bluetooth packets, configuring the Ubertooth and updating
firmware. All three are built and installed by default using the following method:

wget https://github.com/greatscottgadgets/ubertooth/releases/download/2018-12-
→˓R1/ubertooth-2018-12-R1.tar.xz
tar xf ubertooth-2018-12-R1.tar.xz
cd ubertooth-2018-12-R1/host
mkdir build
cd build
cmake ..
make
sudo make install

Linux users: if you are installing for the first time, or you receive errors about finding the library, you should run:

sudo ldconfig

19.4 Wireshark

Wireshark version 1.12 and newer includes the Ubertooth BLE plugin by default. It is also possible to capture BLE
from Ubertooth directly into Wireshark with a little work.

The Wireshark BTBB and BR/EDR plugins allow Bluetooth baseband traffic that has been captured using Kismet to be
analysed and disected within the Wireshark GUI. They are built separately from the rest of the Ubertooth and libbtbb
software.

The directory passed to cmake as MAKE_INSTALL_LIBDIR varies from system to system, but it should be the loca-
tion of existing Wireshark plugins, such as asn1.so and ethercat.so. On macOS this is likely /Applications/
Wireshark.app/Contents/PlugIns/wireshark/.

sudo apt-get install wireshark wireshark-dev libwireshark-dev cmake
cd libbtbb-2018-12-R1/wireshark/plugins/btbb
mkdir build
cd build
cmake -DCMAKE_INSTALL_LIBDIR=/usr/lib/x86_64-linux-gnu/wireshark/libwireshark3/
→˓plugins ..
make
sudo make install

Then repeat for the BT BR/EDR plugin:

sudo apt-get install wireshark wireshark-dev libwireshark-dev cmake
cd libbtbb-2018-12-R1/wireshark/plugins/btbredr
mkdir build
cd build
cmake -DCMAKE_INSTALL_LIBDIR=/usr/lib/x86_64-linux-gnu/wireshark/libwireshark3/

(continues on next page)

74 Chapter 19. Release 2018-12-R1

https://ubertooth.readthedocs.io/en/latest/capturing_BLE_Wireshark.html
https://ubertooth.readthedocs.io/en/latest/capturing_BLE_Wireshark.html

Ubertooth

(continued from previous page)

→˓plugins ..
make
sudo make install

19.5 Third Party Software

There are a number of pieces of third party software that support the Ubertooth. Some support Ubertooth out of the
box, while others require plugins to be built.

19.5.1 Firmware

This completes the install of the Ubertooth tools, the next step is to look at the getting started guide. You should always
update the firmware on the Ubertooth device to match the software release version that you are using.

19.5. Third Party Software 75

https://ubertooth.readthedocs.io/en/latest/third_party_software.html
https://ubertooth.readthedocs.io/en/latest/firmware.html

Ubertooth

76 Chapter 19. Release 2018-12-R1

CHAPTER

TWENTY

TODO LIST

20.1 PCAP

• Obtain DLT/linktype from libPCAP devs for BTBB, see here.

• Define format for including meta-data (using PPI), see here.

• Move Wireshark plugins to Wireshark repo.

• Add pcap support to ubertooth tools (currently only in kismet) by moving it to libbtbb.

20.2 Basic rate / libbtbb

• Better handling of AFH maps when trying clock values. The code currently makes the assumption that AFH is
enabled but all channels are in use.

• Detect syncword on Ubertooth for known piconets

• Make logging configurable - possibly combine text based logging, file dumps and pcap writing in to one logging
system.

20.3 Releases

• Binary packages for both libbtbb and ubertooth - rpm, deb, others?

• More frequent releases - requires better testing of code in git and separation of half-implemented features. This
is more about process than an actionable todo item.

• DONE: Add uninstall to Makefile.

• Add WICD headers to support windows users (requires switch to libusbx).

77

https://ubertooth.readthedocs.io/en/latest/bluetooth_captures_PCAP.html
https://ubertooth.readthedocs.io/en/latest/bluetooth_captures_PCAP.html

Ubertooth

20.4 GR-Bluetooth

• Finish migration to libbtbb.

• Add BTLE support.

• General performance improvements (there must be some!).

20.5 Bigger / more vague projects

• Transmit basic rate packets - inquiry scan to start with.

• Implement full BTLE device in firmware.

• ANT/ANT+ sniffing.

– http://www.thisisant.com/developer/resources/downloads/#documents_tab

– http://www.thisisant.com/developer/resources/tech-faq/

• Communicate between Ubertooth devices using SPI on the expansion port.

• Communicate with other devices using SPI on the expansion port.

• Write to SD card using SPI on the expansion port.

78 Chapter 20. ToDo List

http://www.thisisant.com/developer/resources/downloads/#documents_tab
http://www.thisisant.com/developer/resources/tech-faq/

CHAPTER

TWENTYONE

RELEASE PROCEDURE

An Ubertooth release is not as simple as a standard GitHub release, there are a few extra tasks, as listed below.

• Tag both libbtbb and ubertooth with the release version. Use an annotated tag. e.g.

• git tag -a yyyy-mm-Rx

• Create a release directory using git archive

• Update the following files to set RELEASE to yyyy-mm-Rx:

– ubertooth/libubertooth/src/CMakeLists.txt

– libbtbb/lib/src/CMakeLists.txt

• Build binary firmware images for all board revs and all common firmware images.

• At time of writing, these are only bluetooth_rxtx and bootloader for Ubertooth One.

• Adjust the GIT_REVISION variable in firmware/common.mk to match the release number

• Build the bluetooth_rxtx firmware and rename bluetooth_rxtx.dfu to ubertooth-one-bin-firmware.dfu

• Copy built firmare hex/bin/dfu files to /ubertooth-one-firmware-bin

• Export gerbers from KiCad (or copy from previous release if unchanged)

• Write release notes, save to top level of archive, add to the wiki and send to the mailing list

• Write/update the build instructions on the wiki as needed

• Perhaps we should branch and do some of this on the branch before tagging, this seems like good practice.

79

Ubertooth

80 Chapter 21. Release Procedure

CHAPTER

TWENTYTWO

UBERTOOTH TWO WISHLIST

At some point the supply of CC2400 ICs will dry up and we will need to design and build a replacement for Ubertooth.
The design goals are the same as Ubertooth One, but it would be nice to add some additional features if we can. This
page is for a wishlist of features.

MCU candidates:

• STM32F2

• LPCxxxx (Which? 18xx? 43xx? 17xx?)

RF candidates:

• ADF7242

• CC2541

• TRC104 - Fixed FSK deviation - unsuitable for BLE

• Amiccom A7137 - Not easy to source

22.1 Wishlist

• Improved MCU

– USB peripheral with 512 byte bulk endpoints

– AES peripheral - ITAR may be an issue

Note: LPC185x, LPC183x, and LPC182x MCUs have a high speed USB peripheral capable of 512 byte bulk endpoints.
Reference: LPC18xx User Manual (UM10430 (PDF)) Chapter 22 Section 22.4.5, PDF page 520.

Room for an SD expansion - preferably using an MCU with SDIO.

Lots of randomly blinking LEDs.

• a more sophisticated transceiver capable of handling EDR payloads

81

http://www.nxp.com/documents/user_manual/UM10430.pdf

Ubertooth

82 Chapter 22. Ubertooth Two Wishlist

CHAPTER

TWENTYTHREE

UBERTOOTH ZERO

Ubertooth Zero was the first working prototype hardware platform of Project Ubertooth. It has been superseded by
Ubertooth One.

23.1 Architecture

• RP-SMA RF connector: connects to test equipment, antenna, or dummy load.

• CC2400 wireless transceiver IC.

• LPC175x ARM Cortex-M3 microcontroller with Full-Speed USB 2.0.

• USB A plug: connects to host computer running Kismet or other host code.

23.2 Features

• 2.4 GHz transmit and receive.

• Transmit power and receive sensitivity comparable to a Class 3 Bluetooth device.

• Non-standard JTAG connector.

• In-System Programming (ISP) serial connector.

• Expansion connector: intended for inter-Ubertooth communication or other future uses.

• Six indicator LEDs.

83

https://ubertooth.readthedocs.io/en/latest/ubertooth_one.html
http://en.wikipedia.org/wiki/SMA_connector
http://focus.ti.com/docs/prod/folders/print/cc2400.html
http://ics.nxp.com/products/lpc1000/lpc17xx/

Ubertooth

23.3 Design

Ubertooth Zero was designed in CadSoft EAGLE with surface mount components suitable for reflow.

23.4 Demonstration

Michael Ossmann presented Ubertooth Zero, a preview (video: part 1, part 2) at ToorCon 12 in October, 2010.

84 Chapter 23. Ubertooth Zero

http://www.cadsoft.de/
http://www.sparkfun.com/tutorials/59

	Ubertooth One
	Architecture
	Features
	Design
	Pins and LEDs
	Power Usage
	Demonstration

	Build Guide
	Release 2020-12-R1
	Prerequisites
	Debian 10 / Ubuntu 20.04 / Kali
	Fedora 33
	RHEL 8
	CentOS 8
	Mac OS X users can use either MacPorts or Homebrew to install the required packages:
	FreeBSD users can install the host tools and library directly from the ports and package system:

	libbtbb
	Ubertooth Tools
	Wireshark plugins

	Third Party Software
	Firmware

	FAQ
	Getting Started
	Spectrum Analysis
	LAP Sniffing
	Kismet
	Where to Go from Here

	Getting Help
	Asking Questions
	Software Bugs

	Capturing BLE in Wireshark
	Capturing BLE in scapy
	Sniffing connection data
	Capturing from a remote host
	Useful display filters

	Bluetooth Captures in PCAP
	Overview
	Aspects of Bluetooth Capture
	Capture Use Cases Summarized
	BR/EDR
	LE

	Session Meta Information (Proposed)
	BREDR_BD_ADDR
	Option Structure
	Description
	C Structure

	BREDR_CLK
	Option Structure
	Description
	C Structure

	BT_WIDEBAND_RF_INFO
	Option Structure
	Description
	C Structure

	LE_LL_CONNECTION_INFO
	Option Structure
	Description
	C Structure

	Under Development

	Allocated DLTs
	LINKTYPE_BLUETOOTH_BREDR_BB
	Packet Structure
	Description
	C Structure

	LINKTYPE_BLUETOOTH_LE_LL_WITH_PHDR
	Packet Structure
	Description
	C Structure

	History
	Ubertooth Community Projects and Mentions
	Building from git
	Prerequisites
	Debian/Ubuntu
	Fedora / Red Hat
	Mac OS X users can use either MacPorts or Homebrew to install the required packages:

	libbtbb
	Ubertooth tools
	Wireshark
	Third Party Software
	Firmware

	Software
	Building and Running Ubertooth Software
	Developing Host Code

	Third Party Software
	Kismet
	Flying Squirrel
	Spectools

	Firmware
	How To Update Firmware
	What Version Am I Running?
	Developing Firmware

	Programming
	USB bootloader
	ISP bootloader
	Pogoprog
	An FTDI Basic Breakout - 3.3V
	Method one: the easy way
	Method two: the better way
	Using ISP

	JTAG

	Assembling Hardware
	Step 0: read these instructions
	Step 1: order a PCB
	Step 2: order a stencil
	Step 3: order the parts
	Step 4: prepare your tools and materials
	Step 5: apply solder paste
	Step 6: place the parts
	Step 7: reflow
	Step 8: rework
	Step 9: inspection
	Step 10: hand soldering
	Step 11: power-on test
	Step 12: further testing
	Step 13: boast

	Release 2015-10-R1
	Prerequisites
	Debian/Ubuntu
	Fedora / Red Hat
	Mac OS X users can use either MacPorts or Homebrew to install the required packages:

	libbtbb
	Wireshark
	Third Party Software
	Firmware

	Release 2017-03-R2
	Prerequisites
	libbtbb
	Ubertooth tools
	Wireshark
	Third Party Software
	Firmware

	Release 2018-08-R1: the DEFCON release
	Preequisites
	libbtbb
	Ubertooth tools
	Wireshark
	Third Party Software
	Firmware

	Release 2018-12-R1
	Prerequisites
	libbtbb
	Ubertooth tools
	Wireshark
	Third Party Software
	Firmware

	ToDo List
	PCAP
	Basic rate / libbtbb
	Releases
	GR-Bluetooth
	Bigger / more vague projects

	Release Procedure
	Ubertooth Two Wishlist
	Wishlist

	Ubertooth Zero
	Architecture
	Features
	Design
	Demonstration

